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SUPERSONIC FLOW AROUND CIRCULAR CONES AT ANGLES OF ATTACK!

By AxTonio FErr:

SUMMARY

The flow around cones without azxial symmetry and morving at
supersonic velocity is analyzed. Singular points are shown
to exist in the flow around the cone if no axial symmetry exists.
The results of the analysis are applied to the determinaiion of
flow around circular cones at small angles of attack. The
concept of a vortical layer around the cone at small angles of
attack 1is introduced, and the correct values of the first-order
terms of the velocity components are determined.

The method used is applied to cones af finite angles of aftack,
and 1t 18 shown that good agreement with experimental results
can be obfained from the first-order theory if the complete
eguation for the pressure distribution is used.

INTRODUCTION

The flow around g cone having & circular cross section and
moving at supersonic speed has been determined by means
of the assumption of small disturbances or by means of
more rigorous methods that consider the existence of the
shocks. The latter methods can be applied for any Mach
. number larger than unity and have been developed by several
authors, at first by assuming all the flow as potential flow

(references 1 and 2) and later by also considering the variation

of entropy due to the change in angle of attack (reference 3).
By means of the development given in reference 3, values of
flow properties around circular cones at an angle of attack
have been tabulated in reference 4. The method has been
extended in reference 5 to larger angles of attack.

In the method given in referemnces 3, 4, and 5, the flow
properties were considered continuous and were developed
in Fourier series in terms of the angle of attack; however,
the existence of a singular point at the surface of the cone was
neglected. The derivatives of the flow properties were
obtained by differentiating the Fourier series term by term,
and the terms of the series that represent the derivatives
were assumed to be of the same order as the corresponding
terms of the integral quantities. For this reason, an errone-
ous distribution of the entropy at the surface of the cone was
obtained.

In this report, the flow around the cone in the general case
is discussed, the existence of singular points in the flow is
proved, and a different procedure for determining the flow
around cones at small, but finite, angles of attack is devel-
oped. This procedure shows the way in which the values
tabulated in reference 4 can be used if a simple correction
is introduced. The values obtained in this way are compared
with experimental results at several values of angle of attack.
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Subscripts:
1
a

b

SYMBOLS

polar coordinates (see fig. 1) N

polar velocity component in radial direction
(along 7), referred to limiting velocity (see
fig. 1) '

polar velocity component normal to ., in meridian
plane =Constant, referred to limiting velocity
(fig. 1)

polar velocity component normal to meridian
plane §—=Constant, referred to limiting velocity

(g 1)

time

pressure

density

entropy

ratio of specific heats (¢ /e,)

specific heab &t constant pressure

specific heat at constant volume

speed of sound

projection of streamline on sphere r=Constant
with center at center of the polar coordinate
gystem

local velocity _

undisturbed velocity, referred to limiting velocity

limiting velocity (velocity for expansion in the
vacuum) o

semiapex angle of conical shock

inelination of axis of conical shock with respect
to free-stream direction

inclination of axie of conical shock with respect to
axis of body

angle of attack

stream conditions

zero-order terms of Fourier series (part independ-
ent from angle of attack)

first-order terms of Fourier series (part propor-
tional to angle of attack)

higher-order terms of Fourier series or quan-
tities at surface of cone

quantities at external surface of vortical layer

quantities for polar coordinate system having
axis coincident with axis of conical shock

18opersedes NACA TN 2238, “Supersonio Flow arcund Clrcular Ocmes at Angles of Attack™ by Antonio Ferrt, 1850,
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A prime is used to designate the terms of zero order in the
power series in A@ for the quantities in the neighborhood of
the meridian plane 6=mr; .two primes are used to designate
the factor of the term containing A¢*/2 in the same power
series. : -

THE FLOW FIELD FOR CONICAL FLOW WITHOUT
AXIAL - SYMMETRY

In order to analyze the flow field for conical flow without
axial symmetry at supersonic speeds, assume & polar co-
ordinate system (r,¢,6). Call v, the velocity component in
the radial direction, v, the velocity component in the direc-
tion normel to r in the meridian plane 8=Constant, and w
the component normal to the meridian plane (fig. 1); that is,

) dr
Tdt
rdxb
“dt
rdoie siny
If the flow is conical,

0V, 0y, ow__
ar =0 or 0 dr
2_,  de_, 3S_,
or or or

For these conditions Euler’s equations become

v, w 09, _
Vo> >y +smv[/ >0 == v, 2—w=0 (1a)
vy, w Ov, , 10p . ‘
v"_ﬁ_{_smtp >d + w—l—v,v,, —alcot Y=0 (1b)
oW, w ow 1
“bt[z smy&ﬁ_l_p sm¢ag+v,w-|—v aweot y=0 (lc)
and the continuity equation becomes
2p0,sin Y+, sintl'g—z-i-p sin ¢ %—li;—i- Dap COS Y+
Op ow__ .

‘wga-i'ﬂ W—O _ 2)

Because the energy in the flow is constant, the following
" relations must apply:

_Y (lop_ pb)_ v, o1,
y—i\p 20 p228) \Zragtirgp T aa
2

(38)

w3Y) (b)

¥ _(19p _2_)_ bv, av“
F3 - a¢+ n
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Un

“\Axis of the polar coordinates
F1aURE 1,—The polar coordinate system.

Comﬁmgé equatic-ms (1), (@), é.nd (3) results in

v, (222 —I—w +v,cot +bv, 1-Ze
(=2 nmoorn 33 (=)

smgbbﬂ( w’) wzl 5’5’5"“‘554'5“:5'):0 4)

The entropy at any point of the flow can be expressed as

%log. P ( ) +Constant

where p a.nd p are the local quantities end p, and p; the
stream quantities. Therefore,

1=128_12p_ 12
"R 26 paﬂ LYY
y—138 12p _12p )
“E 3 pov "oy

Combining equations (5) with equations (1), (2), and (3)
results in the following expressions:

a® oS bv, dv,
’YR 550 m"bbw U 540 3 ==+v0 sin ¥+ v,w cos ¥
a? oS . ov, bw w OV, .
TRop ™ Uy W agtamy o T LY
(6)
Equations (6) combined with equation (la) give
., 08 S )
R Sm'/'?i—f_—w?ﬁ (D

Equation (7) is general for any conical flow and defines the
lines of constant entropy, which correspond to the siream-

lines. In fact, if Z is the streamline projection on the spherc
given by r= Constant

dS_238 dy 08 do_

dL oy dL " 26 dL
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and, from equation (7),

( '50 L vn SIIl '[’ (8)

At the surface of any conicel body the component of
velocity in the direction normal to the surface is zero and
the stream moves tangentially to the body; therefore, the
entropy at the surface of the body must be constant or must
change in a discontinuous way (in which case equations (7)
and (8) are not valid).

THE PROPERTIES OF CONICAL FLOW WITHOUT AXIAL
SYMMETRY

In order to analyze the properties of conical flow without
axial symmetry, consider first a polar coordinate system
having its axis coincident with the axis of a circular cone
at & small angle of attack (fig. 2) and assume that the direc-
tHon of the undisturbed velocity V; is in the plane =0,
#=mx. In this case, the plane =0, == is a plane of sym-
metry of the flow and, in this plane,

w=0
2,70
end.
(oL OUn__ oS
260 260 350

Therefore, equation (7) shows that in the plane 6=0, ==
the entropy is constant. At the surface of the cone (¥=¢.),
the normal component o, is zero and w# 0; therefore, equation
(7) shows that the entropy remains constant also along the
surface of the cone (y=v,). Only at points A and B,
(defined by 6=0, 6=, and y=y.) 7,—>0 and w—0; therefore,

6-=0 Shock wave
G
[:)
¥
Vo et
0 fere — _ \
y/
L€
B
k4

Shock wave
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equation (7) is indeterminate. Because the body is at an

angle of attack, the axis of conical shock does not remain

coincident with the direction of the velocity Vi, and the
entropy in the plane =0 must be differsnt from the entropy
in the plane §==: The entropy at the cone surface therefors
must be different from the entropy at the plane 6=0, from
the entropy at the plane #=m, or from both. In this case,
where w=0 and #,=0, a discontinuity of entropy must exist
either at A or B or both points.

In order to find a relation between the value of the entropy
at the surface of the cone and the values of the entropy in
the meridian plane 6=0, 8=, the following considerations

cenbe used: Inthe meridian plape(f=0,8=17),w, bﬁ' and —= Y]
are zero because the plane is & plane of symmetry of the flow
28 -

field and, from equation (7), W=O' Therefore, in the plane
of symmetry in the zone outside of the singular points A

and B,
bw
(628’ aa oS ©)
Y\ 26/  s.sin ¢ OF

For the case considered, the velocity component v, is nega-

tive at the shock or at the Mach cone and remains negative
throughout the field, until it becomes zero at the surface of

2
the cone; therefore, the value of %OS; tends to increase in

absolute value as ¢ decreases from the value corresponding
to the value at the surface of the shock to the value at the

is negative and tends to decrease

surface of the cone when E;_zg

ow ..
when > is positive.

Shock wave

Streamiine

[

FI6TRE 2~—The singular points at the surface of the cone.
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Because the entropy remains constant along each stream-
2
line, the decrease of the absolute value of aa—g as ¢ decreases

corresponds to a departure of projection of the streamlines
on the sphere r=Constant from the plane of symmetry; but,

2 2
if %(%) is of sign opposite to g—g—;' the projection of the
streamlines on the sphere r=Constant tends to converge
toward the plane of symmetry as ¢ decreases from the value
at the shock to the value at the surface of the cone.

Now, with the convention used in figure 2, the component
w is negative throughout the field and is zero at =0 and

6==. Therefore, %%’ is negative in the zone #=0 but is

positive in the zone =, and the streamline projection tends
to converge toward the zone of point A and diverge from
the zone of point B. Because of the departure of the stream-
lines from the plane ==, the enfropy in zone B remains
constant and, therefore, the entropy at the surface of the
cone is equal to the entropy at the meridian plane f==; at
point A a discontinuity of entropy exists from the value
corresponding to the plane =0 to the larger value existing
in the plane §=n=.
converge at point A where the entropy is not single-valued.
Because v, approazches zero near the cone, equation (8)
shows that all the streamline projections tend to become
parallel to the line ¢y=Constant in the zone near the cone
and converge at A. The value of v, in the meridian plane
6=0 can change sign and car be positive in the neighbor-
hood of the point A (case of large angles of attack). In this
case the right-hand side of equation (9) changes sign and
the singular point moves away from A in the meridian plane
=0 and occurs at the other point of the meridian plane
where v, is also zero. (At the shock or at the Mach wave
v, is negative; therefore, another smgular point where v,—O
must exist.)

Itis mterestmg to observe that singular points must exist
in any supersonic conical flow without axial symmetry.
Considerations similar to those used for the case of circular
cones at an angle of attack can be extended to other cases,
and it can be shown that the streamlines that are tangent
to the body start from points of the shock and meet the
body at points where the component_of velocity perpen-
dicular to the radius and tangent to the body vanishes and

has & positive derivative in the streamline direction (equiv_a—

lent to the condition of positive %13) Convergency of

streamlines occurs and, therefore, the points are singular at
the points where this component vanishes and has a negative
derivative in the direction tangent to the body, while the
component normal to the body also vanishes and has a
negative derivative in the direction normal to the body

(equwalent ta v,=0 and >0 negatlve)

For example, the conical body of figure 3 has two planes
of symmetry, AA’ and BB’ when w and v, are zero, but at

the points BB/, %—1: is positive, while at AA’, it is negative.

All the projections of the streamlines .
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%v_‘; is negative at AA’ and BB’, the
points AA’ are singular points and the entropy at the surface
of the body is determined by the shock strength at the

points CC’.

Therefore, because

DETERMINATION OF THE FLOW AROUND CIRCULAR CONES
AT SMALL ANGLES OF ATTACK

In order to determine the flow around circular cones at
small angles of attack, consider a polar coordinate system,
the axis of which is coincident with the body axis. At the
surface of the body the velocity component v, is zero and in
the neighborhood of the body is very small; therefore, the
terms v,%/a? can be neglected with respect to unity.

If the angle of attack is small, the component w is also
small and the terms w?/a® can also be neglected. On the
basis of this approximation, in the neighborhood of the body
equation (4) can be expressed as

29,49, cot ‘H%t:;“’s}?_;?a’é"o (10)

This equation permits a particular solution of this type
chosen from physical considerations

=0, -+ av;, cos G-+ >3v,, cos mf
0n="Dx_+ o0y, COS 6+ 0, cOS MO (11)

w=qaw, sin 8-+ > w, cos mf

where 7, , , s , ., and ws are functions only of ¢, are
constant Tor constant values of ¢, and must be chosen in &
form that satisfies the boundary conditions.

Consider now & conical shock having circular cross seciion
and semiapex angle ¢ (fig. 4). Consider the cone inclined &t
an angle § with respect to the undisturbed velocity with a
polar coordinate system, the axis of which is coincident with
the axis of the conical shock. If #,, v,, and w, are the
velocity components referred to the hnntmg velocity V7 in
the new coordinate system (ry, ¥i, 6,), from the shock-wave
relations the following equations result:

= V; cos & cos ¢+ V; sin & sin o cos 6,

w,=¥-V, sin & sin 6,
=1 1—v, 2 —w,?
+ ~+1 V, cos 8 sin o— V; 8in § cos o cos 0,

—y =

If 6 is assumed to be small and terms of the order of & are
neglected, these equations become

v,,= Vicas o+ 38V sin o cos 6,

w,=— V6 sin 6,
_ 7l l—VI’colsr"‘.—o')_ - (12)
Fne™= y+1 Visin ¢

—Bcosur< 211+ Vsnrclgs a)cos&.
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FreURE 3.~The singular points at the surface of-8 cane in supersonic flow without axial symmetry.

6-0

Axis of the
corrical shock

¥

!

!
/ Axis of the
conical body

FiaurE 4.—The position of the conical shock with regpect to the conteal body.

The flow behind a circular conical shock inclined at a small
angle & with respect to the undisturbed stream can therefore
be espressed in the form

-v,‘=-u,¢s+ § Dry, CO8 0,

-v,,,=u,la'—[—6v,lb‘ cos 0, (13)
We=— 8’")3‘ sin 6,

where all the terms containing ,,, 7., and w, are small,

that is, of the order of &.
If the axis of the conical coordinates is rotated at an angle
¢ of the same order as the angle § and terms of the order of

are neglected, the velocity components »,, ,, and w referred
to the new axis (fig. 4) become

Vs, )
.p,=u,¢'—[— T n—i-au,as cos &
E 4
(a ﬂa, ) . (14)
v,,=-v,¢a+ 7. 17—[—50,.% cos @
vn“:ﬂ .
w= 5wbs—si.n1p, sin. 8 )

where 6, the coordinate referred to the new axis, is given by
cos f=cos 6,—n cot ¢, sin %8,

Equations (14) show that the fiow behind a circular
conical shock inclined at a small angle 5 with respect to the
direction of the undisturbed stream and at an angle n with
respect to & conical body can also be expressed in the form
given in equations (11) where, if the angles n and & are
small and the terms of the order of 4 and & are neglected,
only the terms having the subseripts ¢ and b must be con-
sidered. Therefore, equations (11), when the terms with
the subscript ¢ are neglected, are valid for small angles of
attack (@=8—1), and a conical circular shock is consistent
with the solution chosen for the flow around the body. At
the surface of the cone the assumption that «® is small
corresponds to the assumption that only the first-order terms
of angle of attack are considered. The conical shock is
inclined a& an angle # with respect fo the circular cone.

This analysis is similar to the analysis of references 2 and
3. No assumption, however, has been introduced for the
entropy distribution; only the velocity components have been
considered to be in the form of equations (11), end no
limiting assumption has been introduced for the derivatives.
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In reference 3, in addition to the equations

vr="0,,+av,, cos § (15a)
Vp="0n,+ Vs, cos § (15b)
wW=aw, sin. § (15¢)
the expressions
D=0+ ap, cos 0 - (164)
p=patap; cos f (16b)
S=8,+aS, cos, § (16¢)

have been used, and the derivatives of entropy, pressure,
and density have been obtained from differentiation of
equations (16). In this way a solution has been found which
gives values of entropy that are variable along the cone
surface and are constant in each meridian plane, while the
entropy actually remains constant along the cone surface
and changes in the meridian plane. An incorrect entropy
distribution has therefore been obtained at the surface of
the body.

In order to analyze in more detail the significance of equa-
tions (16) and their inconsistency with the approximation
considered in references 2 and 3, consider equation (7). In
T, g—i=0; therefore,
S:+ a8, or S;— oS} of equation (16¢) must remain constant.

Consider now the plane f=rx and express the entropy S
in the form

0’

S=8"-8" = - : (17)

the plane of symmetry 6=0 or =

which satisfies the condition of symmetry. Because of
equation (7),

o8’
and, from equations (16) and (17),
S§'=8,—aS, {19)
and
ouS',=—-S" M (20)
From equations (7) and (17},
o8’ dS8¥ AP\ o
v, 8in ¢ 2% 2 =wS”Af
4
However, ba%=0; therefore,
Ab E)S”__ wS”
2 Y v, 8D ¢

or, since from equation (15¢) w=—aw, Af,

8" ewS” .
oY 9, 8in

REPORT 1045—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

By use of equation (20), in the neighborhood of the plane

f=mn,

DS,, 2%01,‘5’;(!2

bgb Ve Sin Y

201’“);8”
DaSin Y

"
w,.S’ has been considered every-
By 810
where to be of the order of o and has been neglected ; hence,
o8 —*%—0 and 9&‘—0.
3 oy

rect only when the ratio /v, is of an order different from
1/« and, therefore, when |v,[>>0. Near the surface of the

cone, v, approaches zero and, therefore,

In reference 3, the term

However, neglecting this term is cor-

28"

50 be~

comes large and cannot be neglected. The extent of the
: "

field around the cone where the term %%— is of the order of
a can be easily determined.

Consider a polar coordinate system having its axis coin-
cident with the axis of the cone. At the surface of the body

v, is zero; therefore, in the meighborhood of the body the

- velocity component v, can be expressed in the form

Ov,
e S

or, by use of equation (10), in the form
o= (204 ) (B 1)

Therefore, v, i8 of the order of « when (Avp)y is of the order
of a. In_this conical layer of thickness (Ay)y of the order of
a, aai is also of the order of & or larger. In thislayer, which
can be called the vortical layer, the term

W

order of a because from equations (18) and (19) o5,

oy

24
shown to be of the same order as

-

In order to investigate the effect of this vortical layer on
the velocity and pressure distribution at the surface of the
cone, consider equations (2}, (4), (6), and (7). If the velocity
components in the neighborhood of the meridian plane ==
are expressed as

=0 ——= (22s)
2
v,.—v,.’—% 0, (22h)
3
w=w" 6—% (22¢)
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the following expressions can be obtained:

aSlf 2wlISfI
W sy )
ou_ 20 ’
o " (sm A @
rr ff ,2

buu 9, __ 1 ’2[2B<Dn Dn —A
]__.

where
— oo — v 0wty —1
A A @)
/4
v+, cot v+ w
B—-— Rt (28)
1=
and
av"a : a',z L _ai’ .

Therefore, all the derivatives of the velocity components
of zero and first order are affected by the entropy variation

oS,
The terms 29 and == t',, are of the

order of a in a layer of thickness « near the surface of the
In this layer they change the value of 3 ‘p

of the order of « and the pressure &t the surface of the cone

of qu&nélues of gle order 6/e®. The only place where the
a a "

terms >0 ‘[, E) v
the cone in a layer of thickness o, where #, tends to the order
8/ (equation (9)). Because the effect of this vorticose
layer existing at the surface of the cone on the pressure is
of the order 6/c?, it can be considered in this approxima-
tion, which neglects terms of the order of o or higher,
that across this layer the pressure distribution remains
constant, but an abrupt variation of entropy occurs; there-
fore, in this approximation the phenomenon can be repre-
sented as in references 3 and 4, where the entropy remsains
constant in every meridian plane until a vortical layer of
infinitesimal thickness is reached at the surface of the cone
across which a variation of entropy occurs from the value
S;4aS, cos 8 to the value S,—aS, that exists at the surface
of the come. Across the layer a variation of density and
velocity components occurs and can be easily determined.

Let 2r,, Ws, Ss, De, ps, 20d @, be the quantities at the external
. surface of the layer (these are the quantities tabulated in

in the meridian plane.

" cone. P of quantities

are of zero order is near the surface of

’
1]
_.y.II cot l,b—ﬂ,—” (2__53 —

w’ 2w 20,0, | 20, smr,’zbw” 21),- rr2
sing\ &%  a? a’ (26) .

reference 4) and ¢, ., S, P., and p. be the quantities at the
surface of the cone. Because it has been shown that

Ds=Pc (30)

Se—S.
g 31)

then

2
— 2=

vretws—o.t

where S,—8, is the entropy jump across the layer.
Now, i
’ v,=%,;,tTav,, cos 0

W= aw, sin & .

and in the plane 6=x

'Dr,=.vrc
We=w.=0
Sa=Sc

or N
(i),a—at-‘,-b) e ('ura_a,'urb) e 'Ur’}

(32)
(S‘,—aS,,)‘= (Su—aS,,) =95

Therefore, if terms of the order of o? are neglected equation

(31) becomes

S,

2 (V1) ,— 07 (2r), =——a‘c (33) ”

or

f a? Sn
(¥r5)e—(¥r)s Wc

However, from equation (la), at the surface of the cone,

' __ 0w
~sin ¢ 08

@3 4)“

or

Wy= Ur
7 sin ¢

(35)

therefore, the values of ¢,, and w, can be ‘determined from
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equation (34) and from the tables of reference 4 where
S, = ,(&_ ﬂ)
b= Da ‘ch

a°2='y_;_l_(1 _.vr'2)

(36)
and
(37)

The values v, , v,,, and w, having been determined, the values
of », and w can be obtainzd at any part of the cone from
equations (15).

THE NUMERICAL DETERMINATION OF THE FLOW FIELD
AROUND CONES AT SMALL ANGLES OF ATTACK

The method presentdd permits the determination of the
pressure distribution around the cones with the assumption
that the terms of the order of o can be neglected. The
pressure at any point can be obtained from the equation

(38)

where V is the local velocity corresponding to the pressure p
and AS is the increase of entropy with respect to the stream
conditions where p; and V) exist. From equations <(15),
172is found to be

Vi=v, +ov,,? cos? 8-+ 2av, v, cos 0+ ow,’sin? 6 {(39)

However, in equation (39) the terms of the order of of
having the form 2v, 9, cos mf# have been neglected (see
equations (11)). If all the terms of the order of o? are
neglected, V2 becomes

V=0, +2av, v, 08 0 (40)

Equations (39) and (40) are different in terms of the order
of of; however, for finite angles of attack good agreement is
obtained only if equation (39) in which some of the of

terms are retained is used in equation (38). - ..

The reason for the better approximation given by equatlon
(39) can be understood if the magnitude of the terms con-
taining o? in the expression of V? is considered. Along the
surface of the cone, aw, is given by

av,b
8in ¥,

aWy=—— - (41)
For a finite value of « and a small value.of ., o®w,? is of
the same order as av,, because sin’y. is also small; therefore,
o2w,? can have an effect on the velocity and pressure dis-
tribution of the same order as the term ar,,v,, which is the

REPORT. 1045—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

only term retained in equation (40). Because the term
o®w? is correct and significant, it can still be reiained also
when other terms in o® are neglected and, therefore, equa-
tion (39) is the expression that must be used for finite angle

of attack, (For example, for a 10° cone (¥.=10°) sin’w/r¢=3l3

and ;i—a—-"=1 for «=1.75° which can be considered a small

n%y
angle.)

In reference 3, equation (16a) has been used in the deriva-
tion of the method; however, the use of this equation is not
necessary, as is briefly shown in the following paragrap_h_.__ ]

Consider a conical circular shock having the semiapex
angle ¢ and inclined at an angle & with respect to the undis-
turbed stream. In the neighborhood of the plane 8=« the
velocity components can be expressed as in equations (22)
and at the shock are given by (from equations (12))

2,/=V] cos ¢—1"8sin o (42)
r/'=—81sin o (43)
w'=1.8 (44)
r y—11=Vilcos®o , ~
Ur = v+1 7 sin o +
2 cos? o .
— 6 cos a‘( —2V 1+ V sm’ ) (45)
Y1 cos a
Da =3 F1 § cos a'( —I— V sm’ ) (46) _‘

and 8" and S”/ are given by

24 1) [ V2 sin? (¢ + 6)-—1;,.”]} +

4

S'=c, log, {1+(‘%1

. —0,
(cp—c,) log. m - - (47)
v 144
V.2 cos ¢ sin o —v, —=—
- QU 8 D,. /5 COSa’
8" =25 7 —(c, u)B
——— 4 Vi?sin?e—v,"? sm ¢
1+7—2T—1«Mﬁ
(48)

All the velocity components are referred to the limiting
velocity, and V7 is the undisturbed velocity also referred to
the limiting velocity. _

In the meridian plane 8=« the entropy S’ is constant;
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therefore when w==0, from equation (1a),

or, ’

Fﬁb—:”n (49)

If equation (4) is applied to the meridian plane §=m and
equation (21) is used, the radius of the hodograph diagram
at any value of ¢ smsaller than ¢ is given by (reference 8)

£

w
e+, cot -+ ——

(Byy=— .3 (50)

1 On i

GIZ
where
‘)

’Y':l a?=1—p/—p,? (51)

Therefore, at the point ¥—Ay in the meridian plane 6=r,

(0 Vyp_ag=—(v,") sin AY+(o/ —R)y cos AY+H(R)y (52)
and
(W2 Yg—av=(r.")s cos AY+(v,”—R); sin Ay (63)

From equations (50) to (53), the velocity components &
and #,” can be determined if the component w” is known in
the meridian plane #==. Since %u;_: is given by equation
(25), the value of 4" can be determined for any value of ¢.
But o, and v,, are the quantities obtained for zero angle of
attack at the same coordinate ¢ of a coordinate system in
axis with the conical shock, and

o =1y,

'l'n”='l'n’_'l’na
therefore, the entire flow field can be determined until «,’
becomes 0. The value of ¢ for which 9,’=0 corresponds to
¥+ a—& and, therefore, gives the value of a.

Considerations similar to those used for cones can be used
for the characteristics method presented in reference 6. In
this case the pressure at the surface of the body can be
obteined from the complete equations, and the vortical
layer must be considered in order to obtain the correct distri~
bution of entropy. The application is the same because the
entropy does not change along each streamline.

COMPARISON WITH EXPERIMENTAL RESULTS

In order to have an indication of the accuracy that can be
expected from the first-order theory, theoretical results have
been compared with some experimental results available.
The theoretical results have been obtained by using the

values of reference 4 for the conditions outside the vortical

layer, and the pressure at the surface of the cone has been

determined in the following way: _

From tables of reference 4 the value of 5/« has been deter-
mined (éfe of tables). The position ¥ in the plane §=x of
the conical body in the shock coordinste system is

¥= ‘xbc'l‘ a—3d (54)
The value of v, at Y.+ a—& has been determined from the
(e—8)

tables of reference 4( 7, at ¢ is given by us—2ug 5

The value of 7. has been obtained from the tables in shock
coordinates

[ dv= (), 2=t 0.0, 2] 59

Then (7)., (vr,),, and (ws). in the body coordinate sys-
tem have been obtained by means of equations (32), (34),
and (35).

From equation (36) S, has been obtained (it has a negative
velue), and from tables of reference 7 S, can be determined—
for example, from the value of the angle of the shock obtained
from reference 7—and

AS=8,—asS, (56)
The pressure has been obtained from equation (38).

In figure 5 a comparison is presented for a cone of ¥, =7.5°
at M=1.6 and four angles of attack. The experimental data
are obtained from tests performed in the Langley 4- by 4-foot
supersonic tunnel. For comparison the values given by
reference 4 and by linear theory are also shown. In figure 6
a comparison is presented for & cone of ¥,=10° at Af=6.86
and two angles of attack. The experimental data have been
obtained from tests performed at the Langley 1i-inch hyper-
sonic tunnel. The agreement in both cases is good, even at
angles of attack where it would be expected that higher-order
terms would be important.

CONCLUDING REMARKS -

The flow around cones without axial symmetry at super-
sonic velocity has been analyzed. Singular points which
complicate the anealysis of the flow field were shown to exist
in the flow. The results of the analysis were applied to the
determination of the flow around circular cones at an angle
of attack. The concept of a vortical layer around the cone
at small angles of attack has been introduced, and the correct
values of the first-order terms of the velocity components
were determined.
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Fraure 5—Comparison of experimental pressure distribution over the surface of a cone with the thearetical pressure distribution. ¥.=7.5°; M =1.6, (Experimental data obtalned from the
4 Langley 4- by 4-foot supersonic tunnel.)

.



SEUPERSONIC FLOW AROUND CIRCULAR CONES AT ANGLES OF ATTACK

36 |1

I
f

38— ©0 O Experimentdl vatues for two different
varses of r along the cone surface

Theoretical values
[ i

N T

'2‘9f !

3

Pressure coefficient
S
_—— — . .‘7 -

|
! I
! | i\
i ;
.08t T i n . N
]
; . —— N~ ]
ot ———
04
—ogl® | | ! | (b} [ | |
180 150 120 S0 60 30 180 150 120 g0 60 30 g
Coardinate 6 Coardinate 8
{a) aw8. 7o, (b) e=14°.

FI6URE 6.—Comperison of experimental pressure distribution over the surface of a cone with the thearatical pressare distribution. ¢.=10°%; Mw=6.580. (Experfmental values for two different
values of r along the cone surfice; deta obtained from the Langiey 11-Inch hypersonic tunnel.)

The method determined was applied to cones at finite
angle of attack, and it is shown that good agreement with
experimental results can be obtained from the first-order
theory if the complete equation for the pressure distribution
is used. The analysis can be extended to the application of
the characteristics method around bodies of revolution at
small angles of attack.

LanNGLEY AERONATTICAL LABORATORY,
Natronar Apvisory COMMITTEE FOB AERONAUTICS,
Lawarey Fiewp, Va., September 26, 1950.
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